i

Simplifying Heuristic Search
and Domain Modeling
With F#

Talk Outline

* Introduction
* Grid Navigation Problem Setup
 Example Domains - Toys
 Example Domains - Industrial

* An Algorithm: A*

* Fitting Domains To Interface

* Conclusion

> Whatis Search, Why do | care?

« Searchis a technique for solving problems
* These problems look like this:

« States

* Actions

« Goals

 Heuristics

> Whatis Search, Why do | care?

« Searchis a technique for solving problems

* These problems look like this:

 States

 Actions
« Goadls

 Heuristics

> Whatis Search, Why do | care?

« Searchis a technique for solving problems

* These problems look like this:

 States

 Actions
« Goadls

 Heuristics

> Whatis Search, Why do | care?

« Searchis a technique for solving problems

* These problems look like this:
« States
* Actions
+ Goals

 Heuristics

> Whatis Search, Why do | care?

« Searchis a technique for solving problems

* These problems look like this:

 States

 Actions
« Goadls

 Heuristics

> Whatis Search, Why do | care?

« Searchis a general technique for solving problems

« The search cares about your problem using this abstraction:

 States
 Actions

« Goals

 Heuristics

Kingston

Enochisburg

Westport

0sgood

> Whatis Search, Why do | care?

Search is a general technique for solving problems

The search cares about your problem using this abstraction:

« States

* Actions

« Goals

* Heuristics
]

Osgood

GANTT Chart for Johs

GANTT Chart for Machines

machine

machine
machine
machine

machine

B in m ot omow
PR R

machine:

machine

machine

machine

LI R I]
—

machine

Talk Outline

* Introduction

* Heuristic Search and Types

* An Algorithm: A*

* Fitting Domains To Interface
* Conclusion

> Heuristic Search: Type Perspective

« Searchis a technique for solving problems

* These problems look like this:

 States

 Actions
« Goadls

 Heuristics

Heuristic Search: Type Perspective

« Searchis a technique for solving problems

* These problems look like this:

« Graphs
« Nodes

 Edges
* Functions on Nodes
« Goal predicate

 Heuristic Estimate

> Graph Search: Nodes and Edges

'action:

Edge<'state, 'action

origin
dest
by way of ‘action

'action:

> Graph Search: Nodes and Edges

> Graph Search: Nodes and Edges

North

South

> Graph Search: Nodes and Edges

5 North

~150uth

North|z

—

> Graph Search: Nodes and Edges

'action:

Edge<'state, 'action

origin
dest
by way of ‘action

'action:

> Heuristic Search: Type Perspective

> Heuristic Search: Type Perspective

GraphSearchProblem
graph Graph

Solution<'state, ‘'action state: ‘action:

initial state

> Heuristic Search: Type Perspective

Explicitly representing the graph is
often infeasible due to size!

Solution

initial st
path Edge

> Heuristic Search: Type Perspective

GraphSearchProblem<'state, 'action 'state: ‘action:
graph : Graph<'state, 'action
initial state 'state

goals : Set<'state

Solution<'state, 'action 'state: ‘action:
initial state 'state
path : Edge<'state, "action> list

ImplicitGraphSearchProblem<'state, "action ‘state: ‘action:
initial state 'state
goal p 'state bool
expand 'state Set<Edge< 'state, 'action

> Heuristic Search: Type Perspective

GraphSearchProblem< 'state, 'action 'state: ‘action:
graph Graph<'state, 'action
initial state 'state

goals : Set<'state

Solution<'state, 'action 'state: 'action:
initial state 'state
path : Edge<'state, "action> list

So don’t represent the graph explicitly. Generate it lazily.

ImplicitGraphSearchPrg®em<'state, "action ‘state: ‘action:
initial state gPite
goal p ‘g le bool

expand 'state Set<Edge< 'state, 'action

> Heuristic Search: Type Perspective

HeuristicSearchProblem

initial state 'state

goal p ‘state
expand ‘state

heuristic state

'action:

bool 'state float "state Edge<'state, "action> list

HeuristicSearchAlgorithm<'state
'state Set<Edge<"state, 'action 'state

> Whatis Search, Why do | care?

« Searchis a technique for solving problems

* These problems look like this:

 States

 Actions
« Goadls

 Heuristics

Heuristic Search

Search

IC

st

i o
U
=
o
a

Vs

R —
e
i

‘=
-
a

L

> Heuristic Search: Type Perspective

HeuristicSearchProblem
initial state "state
goal p ‘state
expand ‘state

heuristic "stat

'action:

HeuristicSearchAlgorithm<'state, ‘actio ‘state:
'state Set<Edge<"state, 'action ‘state bool 'state float

Expand Goal Heuristic Initial Solution

Edge<'state, 'action> list

> Heuristic Search: Type Perspective

HeuristicSearchAlgorithm<'state, ‘actio ‘state: "action:

‘state Set<Edge<"'state, 'action bool float 'state Edge<'state, "action> list

Expand Goal Heuristic Initial Solution

“ Graph search \

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node] to closed
fringe < INSERTALL(EXPAND(node, problem), fringe)
end

> Heuristic Search: Type Perspective

HeuristicSearchAlgorithm<'state, "actio 'state: 'action:

‘state Set<Edge<"'state, 'action bool float 'state Edge<'state, "action> list

Expand Heuristic Solution

“ Graph search \

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed < an empty set
fringe — INSERT(MAKE—NODElINITIAL-STATEI[[)'/'()I)/(’m]),f/‘mg())
loop do

if fringe is empty then return failure

node «— REMOVE-FRONT(fringe)
if GOAL-TESTI([)'/'()l)/(»"m, STATE[node]) then return node
if STATE[node] is not in closed then

add STATE[node] to closed

fringe < INSERTALL|EXPAND| node, problem), fringe)

end

Talk Outline

* Introduction

* Heuristic Search and Types

* An Algorithm: A*

* Fitting Domains To Interface
* Conclusion

> Heuristic Search - A*

f(n) =g(n) + h(n)

S
T

b
£

And so on and so forth...

> Heuristic Search - A*

f(n) =g(n) + h(n)

0000

And so on and so forth...

> Heuristic Search - A*

f(n) =g(n) + h(n)

Q@000
000 O

And so on and so forth...

> Heuristic Search - A*

f(n) =g(n) + h(n)

Q@000
Q@00 O
0000

And so on and so forth...

> Heuristic Search - A*

f(n) =g(n) + h(n)

@00 O®

000000¢
0000

And so on and so forth...

> Heuristic Search - A*

HeuristicSearchAlgorithm<'state actio state: action:

‘state Set<Edge«<"state, "acti bool ‘state float 'state Edge<'state, "action> list

Expand Heuristic Solution

“ Graph search \

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed < an empty set
fringe — INSERT(I\IAKE—NODE'INITIAL-STATEI[[)/'()I)/('m]),frmg())
loop do

if fringe is empty then return failure

node < REMOVE-FRONT(fringe)
if GOAL-TESTI(p/'()/)/("m, STATE[node]) then return node
if STATE[node] is not in closed then

add STATE[node] to closed

fringe < INSERTALL|EXPAND| node, problem), fringe)

end

> Heuristic Search - A*

HeuristicSearchAlgorithm<'state, 'action ‘state: "action:
‘state Set<Edge<'state, "action ‘state bool ‘state float 'state Edge<'state, 'action> list
Expand Heuristic Initial Solution
E not finished
= pop()
| None finished
= | Some _cucrent node
node goal test|current_node
metrics.solution nodes l solution = current_nndel found at time = DateTime.Now } :: metrics.solution nodes;
finished
key val = node key current node
should expand = consider node key val current node
= should_expand
closedlist closgdlist Addfley val, current node)
child tuples =|node expand current node
List.iter (consider child current node) child tuples
I { metrics stop time = Some DateTime.Now }

> Heuristic Search - A*

HeuristicSearchAlgorithm<'state, 'action ‘state: "action:
‘state Set<Edge<'state, "action ‘state bool ‘state float 'state Edge<'state, 'action> list

Heuristic Solution

= not finished

= pop()

| None finished

= | Some current_node

node goal test current_node

metrics.solution nodes { solution = current node; found at time = DateTime.Now } :: metrics.solution nodes;
finished

key val = node key current node

should expand = consider node key val current node

= should_expand

closedlist closedlist.Add(key val, current node)
child tuples = node expand current_ node

List.iter (consider child current node) child tuples

{ metrics stop time = Some DateTime.Now }

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

o &
D H e u rl Stl c closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
S % loop do
ea rc h e A if fringe is empty then return failure

node — REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then

add STATE[node] to closed

fringe «— INSERTALL(EXPAND(node, problem), fringe)

end

not finished
pop()

None finished

Some current_node

node_goal test current_node
JateTime.Now } :: metrics.solution_nodes;

metrics.solution_nodes { solution = current_node; found_at time = Dat

finished

key val = node_key current_node
should expand = consider node key val current_node
should_expand
closedlist closedlist.Add(key_val, current_node)
child tuples = node_expand current node
List.iter (consider child current_node) child tuples

{ metrics

> Heuristic Search - A*

HeuristicSearchAlgorithm<'state, 'action ‘state: "action:
‘state Set<Edge<'state, "action ‘state bool ‘state float 'state Edge<'state, 'action> list

Heuristic Solution

= not finished

= pop()

| None finished

= | Some current_node

node goal test current_node

metrics.solution nodes { solution = current node; found at time = DateTime.Now } :: metrics.solution nodes;
finished

key val = node key current node

should expand = consider node key val current node

= should_expand

closedlist closedlist.Add(key val, current node)
child tuples = node expand current_ node

List.iter (consider child current node) child tuples

{ metrics stop time = Some DateTime.Now }

> Heuristic Search - A*

Hlet astar search (iface : DomainInterftace.CostHeuristicDuplicateDomainInterface<float, 'state, 'hashvalue>} =
nutable openlist : FSharpx.Collections.IPriorityQueuec’state SearchNode> = FSharpx.Collections.PriorityQueue.empty false
nutable closedlist : FSharpx.Collections.PersistentHashMap<'hash value, 'state SearchMode» = FSharpx.Collections.PersistentHashMap.empty
let root = make root iface.H iface.InitialState
=t metrics = initial metrics ()
let node key = wrap state fn iface.Key
=t node_expand = wrap_state fn iface.Expand
let node goal test = wrap state fn iface.GoalP
let enqueue (node : "state SearchMode) = openlist <- FSharpx.Collections.PriorityQueue.insert node openlist
=t consider child current node (state, step cost)
let pop ()
=t consider_node key_val current_node
engueue root
let mutable finished =
nile not finished dc
match pop() with
| None -» finished
| Some current node -:
if node goal test current_node then begin
metrics.solution node5 - { solution = current_node; found at time = DateTime.Mow } :: metrics.solution_ nodes;
finished <- true en S E

let key val = node key current node
let should expand = CDnSidEP_HDdE key val current_node
if should expand then begin R
closedlist «- c1059d115t Add({key val, current node)
let child_tuples = node_expand current_node

List.iter (consider child current node) child tuples

metrics with stop time = Some DateTime.Now

Talk Outline

* Introduction

* An Algorithm: A*

* Fitting Domains To Interface
* Grid Navigation
* String Edit Distance

* Conclusion

> Heuristic Search - What is a Domain?

DomainInterface<'cost, 'state» =

Expand : "state (‘state * "cost) list
GoalP : 'state bool
Initialstate : "state

> Heuristic Search - What is a Domain?

=

=

DomainInter

face

DomainInterface< ' cost, 'state>
Expand : "state
GoalP : "state
Initialstate :

DuplicateDomainIntertace< cost,
DomainInterface< ' cost,
Key : 'state

DisplayKey : "st

("state * "cost) list
bool
'‘state
"state, "hashvalue» =
‘state>
"hashvalue
ate string

> Heuristic Search - What is a Domain?

ne DomainInterftace< ' cost, ‘state» =

abstract member Expand : "state -»> ("state * "cost) list
abstract member GoalP : 'state -»> bool
abstract member InitialState : "state

e DuplicateDomainInterface< ' cost, 'state, "hashvalue> =

rit DomainInterface«< ' cost, "state>

abstract member Key : "state -> "hashvalue
abstract member DisplayKey : “state -> string

oe CostHeuristicDuplicateDomainInterftace< cost, 'state, "hashvalue>

inherit DuplicateDomainInterface<’cost, 'state, "hashvalue>

abstract member H : "state -> "cost

> Grid Navigation as a Domain

aridDomainIntertace(problem : Problem) =
DomainInterface.CostHeuristicDuplicateDomainInterface<tloat,
this.Expand s = expand problem.board s
this.GoalP s = goal test problem s

this.Key s = key problem.board s
this.H s = manhattan_distance problem s |»> float
this.Initial5tate = make initial state problem

> Grid Navigation as a Domain

GridDomainInterface(problem : Problem) =
DomainInterface.CostHeuristicDuplicateDomainInterface<tl

this.Expand s = expand problem.board s
this.GoalP s = goal test problem s
this.Key s = key problem.board s

this.H s = manhattan_distance problem s |»> float

this.Initial5tate = make initial state problem

HeuristicSearchAlgorithm<'state, ‘"action ‘state: ‘action:
'state Set<Edge<'state, 'action 'state bool 'state float 'state Edge<'state, "action> list

> Grid Navigation as a Domain

start : Position
finish : Position

board : Board

> Grid Navigation as a Domain

position : Position;
1 generated by : Action;
[¥
Board = bool [,]
= Problem = {

start : Position
finish : Position
board : Board

> Grid Navigation as a Domain

South
East
West
Noop

string of action =
North
South
East
West
Noop

> Grid Navigation as a Domain

= opposite_action =
North South
South North
East West
West East
Moop Moop

are_opposite (actl : Action) (act2
actl = opposite action act2

move (position : Position)
North { position y = position.
South { position y = position.
East { position position.x
West { position position.x
Noop position

[SR R |

move state (state : S e) action =
{ position = move state.position action; generated by = action }

expand (board } =
possible actions North; South; East; West]
validate position = legal position board
consider_action (accum : (5tate * float) list) (action : Action) =
are opposite action state.generated by accum
state’ = move state state action
validate position state'.position
(state', 1.) :: accum

accum
List.fold consider action [] possible actions

>

Grid Navigation as a Domain

Ji=

|'|_I

key (board : Board) (state : 5tat
width = board.GetlLength 1

state.position.x + state.position.y * width

make initial state (problem : Problem) = {
position = problem.start;
generated by = Noop

goal test (problem : Problem) (state : 5State) =
problem.finish = state.position

manhattan distance (problem : Problem) (state : State) =
abs(problem.finish.x - state.position.x) + abs(problem.finish.y - state.position.y)

> Grid Navigation as a Domain

aridDomainIntertace(problem : Problem) =
DomainInterface.CostHeuristicDuplicateDomainInterface<tloat,
this.Expand s = expand problem.board s
this.GoalP s = goal test problem s

this.Key s = key problem.board s
this.H s = manhattan_distance problem s |»> float
this.Initial5tate = make initial state problem

Talk Outline

* Introduction

* An Algorithm: A*

* Fitting Domains To Interface
* Grid Navigation
* String Edit Distance

* Conclusion

> String Edit Distance -
You Can’t Get There From Here

HERE

THERE

> String Edit Distance -
You Can’t Get There From Here

HERE

THERE

> String Edit Distance -
You Can’t Get There From Here

HERE
" HERE

THERE

> String Edit Distance -
You Can’t Get There From Here

HERE
HERE
THERE
THERE

String Editing as a Domain

= S5tringDomainInterface(problem : Problem) =

= DomainInterface.CostHeuristicDuplicateDomainInterface<tloat, State, string>»
this.Expand s = expand problem s

this.GoalP s = goal test problem s

this.Key s = key s

this.Displaykey s = string of element_array s.state

this.H s = character_delta problem s

this.Initial5tate = make initial state problem

[

HeuristicSearchProblem<'state, 'action 'state: ‘action:
initial state 'state
goal p ‘state bool
expand ‘state Set<Edge<'state, 'action

heuristic 'state float
HeuristicSearchAlgorithm<'state, 'action ‘state: "action:
'state Set<Edge<'state, 'action ‘state bool "state float 'state Edge<'state, 'action> list

> String Editing as a Domain

Element =
Alphabetical
Null

index: int

character: Character

Add Update
Replace Update

ShiftRight

|

|

|

| shiftLeft
|

| Noop

—

stalte = q

state: Element array
generated by : A

Problem = {

ble f
start: Element array

finish: Element array

> String Editing as a Domain

goal test (instance Problem) (state :
state.state = instance.finish

= key (state : State) =
string_of element array state.state

= make initial state (problem : Problem) =
= {

state = problem.start

generated by = Noop

| ¥
g character_delta (problem : Problem) (state : State) =
= char_count =
| Null 8
| _ 1
[problem count = Array.fold (accum el accum + char_count el) @ problem.finish
state count = Array.fold (accum el accum + char_count el) @ state.state
delta = problem count - state count
= delta < @ float delta * ADD COST

float delta * DEL_COST

> String Editing as a Domain

= expand (problem : Problem) (state : State) =
possible indices = [8..state.state.length - 1]
possible characters = appearing in problem.finish
possible updates =
List.fold (accum index
|l ist.fold (accum?2 character { index = index; character

-

character } :: accum2) accum possible characters) [] possible indices

possible shifts = [ShiftLeft; ShiftRight]

possible removes = List.map Remove possible indices
possible adds = List.map Add possible updates
possible replaces = List.map Replace possible_updates

generate successor (accum : (State*float) list) (action : Action)
valid move state action
(apply_nondestructive state action, cost state action) :: accum

-]

accum
possible_actions = possible shifts @ possible_removes (@ possible adds @ possible replaces
List.fold generate successor [] possible actions

he

Talk Outline

* Introduction

* An Algorithm: A*

* Fitting Domains To Interface
* Grid Navigation
* String Edit Distance

* Conclusion

Talk Outline

* Introduction
* An Algorithm: A*
* Fitting Domains To Interface

 Conclusion

* Functional programming is a natural fit for search code
* Passing in Expand, Goal, Heuristic Functions
e Currying & Partial Function Application

* Types make separation of domain, solver easy

> Heuristic Search: Type Perspective

[<CustomEquality; CustomComparison>]
Action<'T 'T:

cost float
id 'T

¥ .GetHashCode

x.Equals(yobj
System.IComparable

x.CompareTo yobj

Talk Outline

* Introduction
* Grid Navigation Problem Setup
 Example Domains - Toys
 Example Domains - Industrial

* An Algorithm: A*

* Fitting Domains To Interface
* Grid Navigation
* String Edit Distance

* Conclusion

> Heuristic Search - Uniform Cost Search

g(n)

> Heuristic Search - Uniform Cost Search

0000

> Heuristic Search - Uniform Cost Search

0000

> Heuristic Search - Uniform Cost Search

g(n)

0000
000000«

And so on and so forth...

> Heuristic Search - Uniform Cost Search

g(n)

0000
000000 ¢

And so on and so forth...

